Communications to the Editor

DC 102, A NEW GLYCOSIDIC PYRROLO(1,4)BENZODIAZEPINE ANTIBIOTIC PRODUCED BY *STREPTOMYCES* SP.

Sir:

We have screened microorganisms, isolated from soil and plants for their ability to produce antitumor antibiotics, and now have isolated a new glycosidic pyrrolo(1,4)benzodiazepine antibiotic named DC 102 from a cultured broth of a Streptomycete. In this communication, we report the production, isolation and characterization of DC 102.

The producing organism was isolated from a soil collected in Onuma Park, Hokkaido, Japan. The seed medium contained glucose 10 g, soluble starch 10 g, Bacto Tryptone 5 g, yeast extract 5 g, beef extract 3 g, $CaCO_3 2$ g per liter of deionized water (pH 7.2 prior to sterilization). It was inoculated with a stock culture and incubated for 48 hours at 28°C. The vegetative seed culture (0.9 liter) was used to inoculate into a 30-liter

jar fermentator containing 18 liters of medium consisting of soluble starch 50 g, dry yeast 20 g, CaCO₃ 5 g, KH₂PO₄ 5 g, MgSO₄·7H₂O 0.5 g and antifoam agents LG 109 (Asahi Denka Kogyo) and KM-70 (Shinetsu Kagaku) per liter of deionized water (pH 7.0 prior to sterilization). The jar fermenter was stirred at 300 rpm with aeration at 18 liters/minute. The antibacterial activity was measured by the paperdisc method on nutrient agar using *Bacillus subtilis* as the test organism and usually reached a maximum after 2-day incubation at 28°C.

The culture liquor was filtered and the filtrate (30 liters) was applied to a column of Diaion HP-20 (Mitsubishi Chemical Industries Limited) which was washed with deionized water. The active fractions eluted with MeOH were pooled, concd *in vacuo* to a volume of 5 liters and then applied to a column of Diaion SK-104 (NH_4^+ form). The column was washed with deionized water, and the antibiotic was eluted with 2 M ammonium acetate - MeOH (1:1). The active eluate was passed through a column of Diaion HP-20, the column was washed with deionized

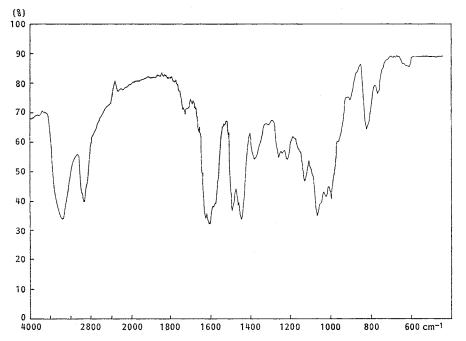


Fig. 2. ¹³C NMR spectrum of DC 102 in CD₃OD (100 MHz).

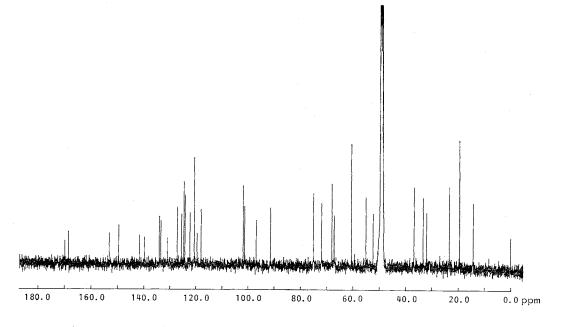
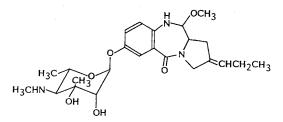



Fig. 3. Structure of DC 102.

water and eluted with MeOH. The active fractions were combined and concentrated to dryness. The residue was chromatographed on a silica gel column using $CHCl_3$ - MeOH (7:3) as eluents. The active fraction was concentrated to dryness, redissolved in MeOH and then passed through a column of DEAE-Sepharose CL-6B (Cl⁻ form). The effluent containing DC 102 was concentrated to dryness and further chromatographed on silica gel column using EtOAc-MeOH (20:1) as eluents to yield 5 mg of DC 102.

DC 102 is a basic compound obtained as white powder. It showed the following properties: MP 120°C (dec); readily soluble in MeOH, EtOH, slightly soluble in H₂O and Me₂CO but insoluble in CHCl₃, *n*-hexane; UV $\lambda_{\text{max}}^{\text{meOH}}$ nm (ε) 210 (14,000), 244 (sh, 11,000), 310 (6,500); electron impact (EI)-mass *m/z* 429.2261 (M⁺-

Table 1. Antimicrobial activity of DC 102.

Organism	MIC (µg/ml)
Candida albicans ATCC 10231	>100
Streptococcus faecium ATCC 10541	83
Pseudomonas aeruginosa Bin H No. 1	> 100
Staphylococcus aureus ATCC 6538P	83
Escherichia coli ATCC 26	>100
Bacillus subtilis No. 10707	42
Proteus vulgaris ATCC 6897	>100
Shigella sonnei ATCC 9290	>100
Salmonella typhi ATCC 9992	>100
Klebsiella pneumoniae ATCC 10031	>100

Table 2. Antitumor activity of DC 102 against P388 lymphocytic leukemia in mice^a.

Dose ^b	T/C (%)
1	140
0.5	154
0.25	125
0.125	120
6	166
	0.25 0.125

^a Tumor inoculated intraperitoneally on day 0.

^b mg/kg/injection: Single dose given intraperitoneally on day 1.

CH₃OH) (calcd for $C_{23}H_{31}N_3O_5$: 429.2242). The IR spectrum of DC 102 is shown in Fig. 1. The ¹³C NMR is given in Fig. 2.

DC 102 had a UV spectrum characteristic of

pyrrolo(1,4)benzodiazepine antibiotics^{1,2)}. It gave a positive reaction to *p*-anisidine, indicating the presence of a sugar moiety. However, its molecular formula is different from that of sibiromycin³⁾, the only aminoglycosidic pyrrolo-(1,4)benzodiazepine antibiotic so far reported. The structure of DC 102 (Fig. 3) was assigned by NMR spectroscopic studies and will be reported in a separate paper (M. YOSHIDA & H.

DC 102 exhibited weak antimicrobial activity against Gram-positive bacteria (Table 1). DC 102 was effective against murine leukemia P388, showing significant increase of life span (ILS 54%) at a dose of 0.5 mg/kg (Table 2). The LD₅₀ value of DC 102 was 1.5 mg/kg (ip) in mouse. The detailed studies of the antitumor activity of DC 102 are in progress and will be published in due course.

Acknowledgment

The authors are grateful to Dr. FUSAO TOMITA for his continuing interest and Mr. TSUYOSHI MOKUDAI for skillful technical assistance. Mitsunobu Hara Tatsuya Tamaoki Mayumi Yoshida Makoto Morimoto[†] Hirofumi Nakano

Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Machida-shi, Tokyo, Japan [†]Pharmaceutical Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Nagaizumi-cho, Shizuoka, Japan

(Received December 17, 1987)

References

- HURLEY, L. H.: Pyrrolo(1,4)benzodiazepine antitumor antibiotics. Comparative aspects of anthramycin, tomaymycin and sibiromycin. J. Antibiotics 30: 349~370, 1977
- ARIMA, K.; M. KOHSAKA, G. TAMURA, H. IMANAKA & H. SAKAI: Studies on tomaymycin, a new antibiotic. I. Isolation and properties of tomaymycin. J. Antibiotics 25: 437~444, 1972
- BRAZHNIKOVA, M. G.; N. V. KONSTANTINOVA & A. S. MESENTSEV: Sibiromycin: Isolation and characterization. J. Antibiotics 25: 668~673, 1972

SANO; in preparation).